Automatic model selection for partially linear models
Xiao Ni,
Hao Helen Zhang and
Daowen Zhang
Journal of Multivariate Analysis, 2009, vol. 100, issue 9, 2100-2111
Abstract:
We propose and study a unified procedure for variable selection in partially linear models. A new type of double-penalized least squares is formulated, using the smoothing spline to estimate the nonparametric part and applying a shrinkage penalty on parametric components to achieve model parsimony. Theoretically we show that, with proper choices of the smoothing and regularization parameters, the proposed procedure can be as efficient as the oracle estimator [J. Fan, R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of American Statistical Association 96 (2001) 1348-1360]. We also study the asymptotic properties of the estimator when the number of parametric effects diverges with the sample size. Frequentist and Bayesian estimates of the covariance and confidence intervals are derived for the estimators. One great advantage of this procedure is its linear mixed model (LMM) representation, which greatly facilitates its implementation by using standard statistical software. Furthermore, the LMM framework enables one to treat the smoothing parameter as a variance component and hence conveniently estimate it together with other regression coefficients. Extensive numerical studies are conducted to demonstrate the effective performance of the proposed procedure.
Keywords: Semiparametric; regression; Smoothing; splines; Smoothly; clipped; absolute; deviation; Variable; selection (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00117-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:9:p:2100-2111
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().