Limiting distributions of maxima under triangular schemes
Melanie Frick and
Rolf-Dieter Reiss
Journal of Multivariate Analysis, 2010, vol. 101, issue 10, 2346-2357
Abstract:
A well-known result in extreme value theory indicates that componentwise taken sample maxima of random vectors are asymptotically independent under weak conditions. However, in important cases this independence is attained at a very slow rate so that the residual dependence structure plays a significant role. In the present article, we deduce limiting distributions of maxima under triangular schemes of random vectors. The residual dependence is expressed by a technical condition imposed on the spectral expansion of the underlying distribution.
Keywords: Extreme; value; distribution; functions; Spectral; density; Limiting; distribution; functions; Triangular; schemes; Residual; dependence (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00125-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:10:p:2346-2357
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().