Concordance measures for multivariate non-continuous random vectors
Mhamed Mesfioui and
Jean-François Quessy
Journal of Multivariate Analysis, 2010, vol. 101, issue 10, 2398-2410
Abstract:
A notion of multivariate concordance suitable for non-continuous random variables is defined and many of its properties are established. This allows the definition of multivariate, non-continuous versions of Kendall's tau, Spearman's rho and Spearman's footrule, which are concordance measures. Since the maximum values of these association measures are not +1 in general, a special attention is given to the computation of upper bounds. The latter turn out to be multivariate generalizations of earlier findings made by Neslehová (2007) [9] and Denuit and Lambert (2005) [2]. They are easy to compute and can be estimated from a data set of (possibly) discontinuous random vectors. Corrected versions are considered as well.
Keywords: Discontinuous; distributions; Copula; Kendall's; tau; Multivariate; concordance; Spearman's; rho; Spearman's; footrule (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00130-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:10:p:2398-2410
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().