A multivariate version of Hoeffding's Phi-Square
Sandra Gaißer,
Martin Ruppert and
Friedrich Schmid
Journal of Multivariate Analysis, 2010, vol. 101, issue 10, 2571-2586
Abstract:
A multivariate measure of association is proposed, which extends the bivariate copula-based measure Phi-Square introduced by Hoeffding [22]. We discuss its analytical properties and calculate its explicit value for some copulas of simple form; a simulation procedure to approximate its value is provided otherwise. A nonparametric estimator for multivariate Phi-Square is derived and its asymptotic behavior is established based on the weak convergence of the empirical copula process both in the case of independent observations and dependent observations from strictly stationary strong mixing sequences. The asymptotic variance of the estimator can be estimated by means of nonparametric bootstrap methods. For illustration, the theoretical results are applied to financial asset return data.
Keywords: Multivariate; measure; of; association; Copula; Nonparametric; estimation; Empirical; copula; process; Weak; convergence; Nonparametric; bootstrap; Strong; mixing (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00153-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:10:p:2571-2586
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().