High-dimensional asymptotic expansion of LR statistic for testing intraclass correlation structure and its error bound
Naohiro Kato,
Takayuki Yamada and
Yasunori Fujikoshi
Journal of Multivariate Analysis, 2010, vol. 101, issue 1, 101-112
Abstract:
This paper deals with the null distribution of a likelihood ratio (LR) statistic for testing the intraclass correlation structure. We derive an asymptotic expansion of the null distribution of the LR statistic when the number of variable p and the sample size N approach infinity together, while the ratio p/N is converging on a finite nonzero limit c[set membership, variant](0,1). Numerical simulations reveal that our approximation is more accurate than the classical [chi]2-type and F-type approximations as p increases in value. Furthermore, we derive a computable error bound for its asymptotic expansion.
Keywords: Asymptotic; expansion; Error; bound; High-dimensional; approximation; Intraclass; correlation; structure; Likelihood; ratio; statistic (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00111-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:1:p:101-112
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().