EconPapers    
Economics at your fingertips  
 

Testing quasi-independence for truncation data

Takeshi Emura and Weijing Wang

Journal of Multivariate Analysis, 2010, vol. 101, issue 1, 223-239

Abstract: Quasi-independence is a common assumption for analyzing truncated data. To verify this condition, we propose a class of weighted log-rank type statistics that include existing tests proposed by Tsai (1990) and Martin and Betensky (2005) as special cases. To choose an appropriate weight function that may lead to a more power test, we derive a score test when the dependence structure under the alternative hypothesis is modeled via the odds ratio function proposed by Chaieb, Rivest and Abdous (2006). Asymptotic properties of the proposed tests are established based on the functional delta method which can handle more general situations than results based on rank-statistics or U-statistics. Extension of the proposed methodology under two different censoring settings is also discussed. Simulations are performed to examine finite-sample performances of the proposed method and its competitors. Two datasets are analyzed for illustrative purposes.

Keywords: Conditional; likelihood; Kendall's; tau; Mantel-Haenszel; test; Power; Right-censoring; Survival; data; Two-by-two; table (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00133-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:1:p:223-239

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:101:y:2010:i:1:p:223-239