On hazard rate ordering of the sums of heterogeneous geometric random variables
Peng Zhao and
Taizhong Hu
Journal of Multivariate Analysis, 2010, vol. 101, issue 1, 44-51
Abstract:
In this paper, we treat convolutions of heterogeneous geometric random variables with respect to the p-larger order and the hazard rate order. It is shown that the p-larger order between two parameter vectors implies the hazard rate order between convolutions of two heterogeneous geometric sequences. Specially in the two-dimensional case, we present an equivalent characterization. The case when one convolution involves identically distributed variables is discussed, and we reveal the link between the hazard rate order of convolutions and the geometric mean of parameters. Finally, we drive the "best negative binomial bounds" for the hazard rate function of any convolution of geometric sequence under this setup.
Keywords: Stochastic; order; Hazard; rate; order; Likelihood; ratio; order; Majorization; p-larger; order; Negative; binomial (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00084-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:1:p:44-51
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().