Inference under functional proportional and common principal component models
Graciela Boente,
Daniela Rodriguez and
Mariela Sued
Journal of Multivariate Analysis, 2010, vol. 101, issue 2, 464-475
Abstract:
In many situations, when dealing with several populations with different covariance operators, equality of the operators is assumed. Usually, if this assumption does not hold, one estimates the covariance operator of each group separately, which leads to a large number of parameters. As in the multivariate setting, this is not satisfactory since the covariance operators may exhibit some common structure. In this paper, we discuss the extension to the functional setting of the common principal component model that has been widely studied when dealing with multivariate observations. Moreover, we also consider a proportional model in which the covariance operators are assumed to be equal up to a multiplicative constant. For both models, we present estimators of the unknown parameters and we obtain their asymptotic distribution. A test for equality against proportionality is also considered.
Keywords: Common; principal; components; Eigenfunctions; Functional; data; analysis; Hilbert-Schmidt; operators; Kernel; methods; Proportional; model (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00174-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:2:p:464-475
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().