Estimation of means of multivariate normal populations with order restriction
Tiefeng Ma and
Songgui Wang
Journal of Multivariate Analysis, 2010, vol. 101, issue 3, 594-602
Abstract:
Multivariate isotonic regression theory plays a key role in the field of statistical inference under order restriction for vector valued parameters. Two cases of estimating multivariate normal means under order restricted set are considered. One case is that covariance matrices are known, the other one is that covariance matrices are unknown but are restricted by partial order. This paper shows that when covariance matrices are known, the estimator given by this paper always dominates unrestricted maximum likelihood estimator uniformly, and when covariance matrices are unknown, the plug-in estimator dominates unrestricted maximum likelihood estimator under the order restricted set of covariance matrices. The isotonic regression estimators in this paper are the generalizations of plug-in estimators in unitary case.
Keywords: Multivariate; normal; mean; Order; restrict; Graybill-Deal; estimator; Isotonic; regression (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00193-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:3:p:594-602
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().