Finite-sample inference with monotone incomplete multivariate normal data, II
Wan-Ying Chang and
Donald St. P. Richards
Journal of Multivariate Analysis, 2010, vol. 101, issue 3, 603-620
Abstract:
We continue our recent work on inference with two-step, monotone incomplete data from a multivariate normal population with mean and covariance matrix . Under the assumption that is block-diagonal when partitioned according to the two-step pattern, we derive the distributions of the diagonal blocks of and of the estimated regression matrix, . We represent in terms of independent matrices; derive its exact distribution, thereby generalizing the Wishart distribution to the setting of monotone incomplete data; and obtain saddlepoint approximations for the distributions of and its partial Iwasawa coordinates. We prove the unbiasedness of a modified likelihood ratio criterion for testing , where is a given matrix, and obtain the null and non-null distributions of the test statistic. In testing , where and are given, we prove that the likelihood ratio criterion is unbiased and obtain its null and non-null distributions. For the sphericity test, , we obtain the null distribution of the likelihood ratio criterion. In testing we show that a modified locally most powerful invariant statistic has the same distribution as a Bartlett-Pillai-Nanda trace statistic in multivariate analysis of variance.
Keywords: Likelihood; ratio; tests; Locally; most; powerful; invariant; tests; Matrix; F-distribution; Maximum; likelihood; estimation; Missing; completely; at; random; Multivariate; analysis; of; variance; Testing; independence; Sphericity; test; Unbiased; test; statistics; Wishart; distribution (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00176-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:3:p:603-620
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().