Robust estimation in a nonlinear cointegration model
Jia Chen,
Degui Li and
Lixin Zhang
Journal of Multivariate Analysis, 2010, vol. 101, issue 3, 706-717
Abstract:
This paper considers the nonparametric M-estimator in a nonlinear cointegration type model. The local time density argument, which was developed by Phillips and Park (1998)Â [6] and Wang and Phillips (2009)Â [9], is applied to establish the asymptotic theory for the nonparametric M-estimator. The weak consistency and the asymptotic distribution of the proposed estimator are established under mild conditions. Meanwhile, the asymptotic distribution of the local least squares estimator and the local least absolute distance estimator can be obtained as applications of our main results. Furthermore, an iterated procedure for obtaining the nonparametric M-estimator and a cross-validation bandwidth selection method are discussed, and some numerical examples are provided to show that the proposed methods perform well in the finite sample case.
Keywords: Cointegration; model; Local; time; density; Nonparametric; M-estimator (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00166-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:3:p:706-717
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().