Nonparametric tests for conditional independence in two-way contingency tables
Gery Geenens and
Leopold Simar
Journal of Multivariate Analysis, 2010, vol. 101, issue 4, 765-788
Abstract:
Testing for the independence between two categorical variables R and S forming a contingency table is a well-known problem: the classical chi-square and likelihood ratio tests are used. Suppose now that for each individual a set of p characteristics is also observed. Those explanatory variables, likely to be associated with R and S, can play a major role in their possible association, and it can therefore be interesting to test the independence between R and S conditionally on them. In this paper, we propose two nonparametric tests which generalise the chi-square and the likelihood ratio ideas to this case. The procedure is based on a kernel estimator of the conditional probabilities. The asymptotic law of the proposed test statistics under the conditional independence hypothesis is derived; the finite sample behaviour of the procedure is analysed through some Monte Carlo experiments and the approach is illustrated with a real data example.
Keywords: Two-way; contingency; tables; Chi-square; test; Likelihood; ratio; test; Nonparametric; regression; Conditional; independence (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00248-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:4:p:765-788
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().