Tests for multiple regression based on simplicial depth
Robin Wellmann and
Christine H. Müller
Journal of Multivariate Analysis, 2010, vol. 101, issue 4, 824-838
Abstract:
A general approach for developing distribution free tests for general linear models based on simplicial depth is applied to multiple regression. The tests are based on the asymptotic distribution of the simplicial regression depth, which depends only on the distribution law of the vector product of regressor variables. Based on this formula, the spectral decomposition and thus the asymptotic distribution is derived for multiple regression through the origin and multiple regression with Cauchy distributed explanatory variables. The errors may be heteroscedastic and the concrete form of the error distribution does not need to be known. Moreover, the asymptotic distribution for multiple regression with intercept does not depend on the location and scale of the explanatory variables. A simulation study suggests that the tests can be applied also to normal distributed explanatory variables. An application on multiple regression for shape analysis of fishes demonstrates the applicability of the new tests and in particular their outlier robustness.
Keywords: Degenerated; U-statistic; Distribution; free; tests; Multiple; regression; Outlier; robustness; Regression; depth; Simplicial; depth; Spectral; decomposition; Shape; analysis (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00239-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:4:p:824-838
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().