Model selection by sequentially normalized least squares
Jorma Rissanen,
Teemu Roos and
Petri Myllymäki
Journal of Multivariate Analysis, 2010, vol. 101, issue 4, 839-849
Abstract:
Model selection by means of the predictive least squares (PLS) principle has been thoroughly studied in the context of regression model selection and autoregressive (AR) model order estimation. We introduce a new criterion based on sequentially minimized squared deviations, which are smaller than both the usual least squares and the squared prediction errors used in PLS. We also prove that our criterion has a probabilistic interpretation as a model which is asymptotically optimal within the given class of distributions by reaching the lower bound on the logarithmic prediction errors, given by the so called stochastic complexity, and approximated by BIC. This holds when the regressor (design) matrix is non-random or determined by the observed data as in AR models. The advantages of the criterion include the fact that it can be evaluated efficiently and exactly, without asymptotic approximations, and importantly, there are no adjustable hyper-parameters, which makes it applicable to both small and large amounts of data.
Keywords: Linear; regression; Time; series; Model; selection; Order; estimation; Predictive; least; squares (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00240-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:4:p:839-849
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().