Multivariate semi-logistic distributions
Hsiaw-Chan Yeh
Journal of Multivariate Analysis, 2010, vol. 101, issue 4, 893-908
Abstract:
Three new multivariate semi-logistic distributions (denoted by MSL(1), MSL(2), and GMSL respectively) are studied in this paper. They are more general than Gumbel's (1961) [1] and Arnold's (1992) [2] multivariate logistic distributions. They may serve as competitors to these commonly used multivariate logistic distributions. Various characterization theorems via geometric maximization and geometric minimization procedures of the three MSL(1), MSL(2) and GMSL are proved. The particular multivariate logistic distribution used in the multiple logistic regression model is introduced. Its characterization theorem is also studied. Finally, some further research work on these MSL is also presented. Some probability density plots and contours of the bivariate MSL(1), MSL(2) as well as Gumbel's and Arnold's bivariate logistic distributions are presented in the Appendix.
Keywords: Multivariate semi-logistic distributions; MSL(1); MSL(2); GMSL Multivariate logistic distribution; ML Characterizations Geometric maximization Geometric minimization Double arrays Multiple logistic regression Logit (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00164-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:4:p:893-908
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().