EconPapers    
Economics at your fingertips  
 

Asymptotics of the norm of elliptical random vectors

Enkelejd Hashorva

Journal of Multivariate Analysis, 2010, vol. 101, issue 4, 926-935

Abstract: In this paper we consider elliptical random vectors in with stochastic representation , where R is a positive random radius independent of the random vector which is uniformly distributed on the unit sphere of and is a given matrix. Denote by ||[dot operator]|| the Euclidean norm in , and let F be the distribution function of R. The main result of this paper is an asymptotic expansion of the probability for F in the Gumbel or the Weibull max-domain of attraction. In the special case that is a mean zero Gaussian random vector our result coincides with the one derived in Hüsler et al. (2002) [1].

Keywords: Elliptical; distribution; Gaussian; distribution; Kotz; Type; distribution; Gumbel; max-domain; of; attraction; Tail; approximation; Density; convergence; Weak; convergence (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00195-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:4:p:926-935

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:101:y:2010:i:4:p:926-935