Boundary kernels for adaptive density estimators on regions with irregular boundaries
Jonathan C. Marshall and
Martin L. Hazelton
Journal of Multivariate Analysis, 2010, vol. 101, issue 4, 949-963
Abstract:
In some applications of kernel density estimation the data may have a highly non-uniform distribution and be confined to a compact region. Standard fixed bandwidth density estimates can struggle to cope with the spatially variable smoothing requirements, and will be subject to excessive bias at the boundary of the region. While adaptive kernel estimators can address the first of these issues, the study of boundary kernel methods has been restricted to the fixed bandwidth context. We propose a new linear boundary kernel which reduces the asymptotic order of the bias of an adaptive density estimator at the boundary, and is simple to implement even on an irregular boundary. The properties of this adaptive boundary kernel are examined theoretically. In particular, we demonstrate that the asymptotic performance of the density estimator is maintained when the adaptive bandwidth is defined in terms of a pilot estimate rather than the true underlying density. We examine the performance for finite sample sizes numerically through analysis of simulated and real data sets.
Keywords: Adaptive; smoothing; Boundary; bias; Edge; effects; Kernel; estimator; Variable; bandwidth (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00165-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:4:p:949-963
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().