Nonparametric Berkson regression under normal measurement error and bounded design
Alexander Meister
Journal of Multivariate Analysis, 2010, vol. 101, issue 5, 1179-1189
Abstract:
Regression data often suffer from the so-called Berkson measurement error which contaminates the design variables. Conventional nonparametric approaches to this errors-in-variables problem usually require rather strong conditions on the support of the design density and that of the contaminated regression function, which seem unrealistic in many cases. In the current note, we introduce a novel nonparametric regression estimator, which is able to identify the regression function on the whole real line under normal Berkson error although the location of the design variables is restricted to some bounded interval. The asymptotic properties of this estimator are investigated and some numerical simulations are provided.
Keywords: Berkson; error; Deconvolution; Errors-in-variables; regression; Inverse; problems; Orthogonal; polynomials (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00201-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:5:p:1179-1189
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().