On the structure of the quadratic subspace in discriminant analysis
Santiago Velilla
Journal of Multivariate Analysis, 2010, vol. 101, issue 5, 1239-1251
Abstract:
The concept of quadratic subspace is introduced as a helpful tool for dimension reduction in quadratic discriminant analysis (QDA). It is argued that an adequate representation of the quadratic subspace may lead to better methods for both data representation and classification. Several theoretical results describe the structure of the quadratic subspace, that is shown to contain some of the subspaces previously proposed in the literature for finding differences between the class means and covariances. A suitable assumption of orthogonality between location and dispersion subspaces allows us to derive a convenient reduced version of the full QDA rule. The behavior of these ideas in practice is illustrated with three real data examples.
Keywords: Data; representation; Location-dispersion; orthogonality; Reduced; quadratic; discrimination; SAVE; SIR; and; SIRII (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00005-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:5:p:1239-1251
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().