Strong convergence of the empirical distribution of eigenvalues of sample covariance matrices with a perturbation matrix
Guangming Pan
Journal of Multivariate Analysis, 2010, vol. 101, issue 6, 1330-1338
Abstract:
Let , where is a random symmetric matrix, a random symmetric matrix, and with being independent real random variables. Suppose that , and are independent. It is proved that the empirical spectral distribution of the eigenvalues of random symmetric matrices converges almost surely to a non-random distribution.
Keywords: Empirical; distribution; Random; matrices; Stieltjes; transform (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00031-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:6:p:1330-1338
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().