EconPapers    
Economics at your fingertips  
 

Shrinkage priors for Bayesian estimation of the mean matrix in an elliptically contoured distribution

Hisayuki Tsukuma

Journal of Multivariate Analysis, 2010, vol. 101, issue 6, 1483-1492

Abstract: This paper deals with the problem of estimating the mean matrix in an elliptically contoured distribution with unknown scale matrix. The Laplace and inverse Laplace transforms of the density allow us not only to evaluate the risk function with respect to a quadratic loss but also to simplify expressions of Bayes estimators. Consequently, it is shown that generalized Bayes estimators against shrinkage priors dominate the unbiased estimator.

Keywords: Decision; theory; Hierarchical; model; The; Laplace; transformation; Minimaxity; Multivariate; linear; model; Quadratic; loss; Scale; mixture; Shrinkage; estimator (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00034-5
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:6:p:1483-1492

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:101:y:2010:i:6:p:1483-1492