EconPapers    
Economics at your fingertips  
 

The efficiency of logistic regression compared to normal discriminant analysis under class-conditional classification noise

Yingtao Bi and Daniel R. Jeske

Journal of Multivariate Analysis, 2010, vol. 101, issue 7, 1622-1637

Abstract: In many real world classification problems, class-conditional classification noise (CCC-Noise) frequently deteriorates the performance of a classifier that is naively built by ignoring it. In this paper, we investigate the impact of CCC-Noise on the quality of a popular generative classifier, normal discriminant analysis (NDA), and its corresponding discriminative classifier, logistic regression (LR). We consider the problem of two multivariate normal populations having a common covariance matrix. We compare the asymptotic distribution of the misclassification error rate of these two classifiers under CCC-Noise. We show that when the noise level is low, the asymptotic error rates of both procedures are only slightly affected. We also show that LR is less deteriorated by CCC-Noise compared to NDA. Under CCC-Noise contexts, the Mahalanobis distance between the populations plays a vital role in determining the relative performance of these two procedures. In particular, when this distance is small, LR tends to be more tolerable to CCC-Noise compared to NDA.

Keywords: Class; noise; Misclassification; rate; Misspecified; model; Asymptotic; distribution (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00051-5
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:7:p:1622-1637

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:101:y:2010:i:7:p:1622-1637