Sparse Bayesian hierarchical modeling of high-dimensional clustering problems
Heng Lian
Journal of Multivariate Analysis, 2010, vol. 101, issue 7, 1728-1737
Abstract:
Clustering is one of the most widely used procedures in the analysis of microarray data, for example with the goal of discovering cancer subtypes based on observed heterogeneity of genetic marks between different tissues. It is well known that in such high-dimensional settings, the existence of many noise variables can overwhelm the few signals embedded in the high-dimensional space. We propose a novel Bayesian approach based on Dirichlet process with a sparsity prior that simultaneous performs variable selection and clustering, and also discover variables that only distinguish a subset of the cluster components. Unlike previous Bayesian formulations, we use Dirichlet process (DP) for both clustering of samples as well as for regularizing the high-dimensional mean/variance structure. To solve the computational challenge brought by this double usage of DP, we propose to make use of a sequential sampling scheme embedded within Markov chain Monte Carlo (MCMC) updates to improve the naive implementation of existing algorithms for DP mixture models. Our method is demonstrated on a simulation study and illustrated with the leukemia gene expression dataset.
Keywords: Dirichlet; process; Markov; chain; Monte; Carlo; Sequential; sampling; Sparsity; prior (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00068-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:7:p:1728-1737
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().