High-dimensional Edgeworth expansion of a test statistic on independence and its error bound
Tomoyuki Akita,
Jinghua Jin and
Hirofumi Wakaki
Journal of Multivariate Analysis, 2010, vol. 101, issue 8, 1806-1813
Abstract:
In this paper, we calculate Edgeworth expansion of a test statistic on independence when some of the parameters are large, and simulate the goodness of fit of its approximation. We also calculate an error bound for Edgeworth expansion. Some tables of the error bound are given, which show that the derived bound is sufficiently small for practical use.
Keywords: Edgeworth; expansion; Error; bound; High; dimension; Likelihood; ratio (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00073-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:8:p:1806-1813
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().