A van Trees inequality for estimators on manifolds
P.E. Jupp
Journal of Multivariate Analysis, 2010, vol. 101, issue 8, 1814-1825
Abstract:
Van Trees' Bayesian version of the Cramér-Rao inequality is generalised here to the context of smooth loss functions on manifolds and estimation of parameters of interest. This extends the multivariate van Trees inequality of Gill and Levit (1995) [R.D. Gill, B.Y. Levit, Applications of the van Trees inequality: a Bayesian Cramér-Rao bound, Bernoulli 1 (1995) 59-79]. In addition, the intrinsic Cramér-Rao inequality of Hendriks (1991) [H. Hendriks, A Cramér-Rao type lower bound for estimators with values in a manifold, J. Multivariate Anal. 38 (1991) 245-261] is extended to cover estimators which may be biased. The quantities used in the new inequalities are described in differential-geometric terms. Some examples are given.
Keywords: Bayes; risk; Bias; Cramer-Rao; inequality; Fisher; information; Hessian; Proper; dispersion; model; Tensor (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00066-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:8:p:1814-1825
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().