On the covariance of the asymptotic empirical copula process
Christian Genest and
Johan Segers
Journal of Multivariate Analysis, 2010, vol. 101, issue 8, 1837-1845
Abstract:
Conditions are given under which the empirical copula process associated with a random sample from a bivariate continuous distribution has a smaller asymptotic covariance function than the standard empirical process based on observations from the copula. Illustrations are provided and consequences for inference are outlined.
Keywords: Asymptotic; variance; Copula; Dependence; parameter; Empirical; process; Independence; Left-tail; decreasing; Rank-based; inference (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00077-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:8:p:1837-1845
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().