Semiparametric inference for transformation models via empirical likelihood
Yichuan Zhao
Journal of Multivariate Analysis, 2010, vol. 101, issue 8, 1846-1858
Abstract:
Recent advances in the transformation model have made it possible to use this model for analyzing a variety of censored survival data. For inference on the regression parameters, there are semiparametric procedures based on the normal approximation. However, the accuracy of such procedures can be quite low when the censoring rate is heavy. In this paper, we apply an empirical likelihood ratio method and derive its limiting distribution via U-statistics. We obtain confidence regions for the regression parameters and compare the proposed method with the normal approximation based method in terms of coverage probability. The simulation results demonstrate that the proposed empirical likelihood method overcomes the under-coverage problem substantially and outperforms the normal approximation based method. The proposed method is illustrated with a real data example. Finally, our method can be applied to general U-statistic type estimating equations.
Keywords: Kaplan-Meier; estimator; Martingale; Proportional; hazards; model; Proportional; odds; model; Right; censoring; U-statistic (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00075-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:8:p:1846-1858
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().