Random block matrices generalizing the classical Jacobi and Laguerre ensembles
Matthias Guhlich,
Jan Nagel and
Holger Dette
Journal of Multivariate Analysis, 2010, vol. 101, issue 8, 1884-1897
Abstract:
In this paper we consider random block matrices which generalize the classical Laguerre ensemble and the Jacobi ensemble. We show that the random eigenvalues of the matrices can be uniformly approximated by the zeros of matrix orthogonal polynomials and obtain a rate for the maximum difference between the eigenvalues and the zeros. This relation between the random block matrices and matrix orthogonal polynomials allows a derivation of the asymptotic spectral distribution of the matrices.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00072-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:8:p:1884-1897
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().