EconPapers    
Economics at your fingertips  
 

Complexity-penalized estimation of minimum volume sets for dependent data

J. Di and E. Kolaczyk

Journal of Multivariate Analysis, 2010, vol. 101, issue 9, 1910-1926

Abstract: A minimum volume (MV) set, at level [alpha], is a set having minimum volume among all those sets containing at least [alpha] probability mass. MV sets provide a natural notion of the 'central mass' of a distribution and, as such, have recently become popular as a tool for the detection of anomalies in multivariate data. Motivated by the fact that anomaly detection problems frequently arise in settings with temporally indexed measurements, we propose here a new method for the estimation of MV sets from dependent data. Our method is based on the concept of complexity-penalized estimation, extending recent work of Scott and Nowak for the case of independent and identically distributed measurements, and has both desirable theoretical properties and a practical implementation. Of particular note is the fact that, for a large class of stochastic processes, choice of an appropriate complexity penalty reduces to the selection of a single tuning parameter, which represents the data dependency of the underlying stochastic process. While in reality the dependence structure is unknown, we offer a data-dependent method for selecting this parameter, based on subsampling principles. Our work is motivated by and illustrated through an application to the detection of anomalous traffic levels in Internet traffic time series.

Keywords: Anomaly; detection; Strong-mixing; process; Multivariate; data; Nonparametric (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00093-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:9:p:1910-1926

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:101:y:2010:i:9:p:1910-1926