Semiparametric analysis based on weighted estimating equations for transformation models with missing covariates
Bin Huang and
Qihua Wang
Journal of Multivariate Analysis, 2010, vol. 101, issue 9, 2078-2090
Abstract:
Missing covariate data are very common in regression analysis. In this paper, the weighted estimating equation method (Qi et al., 2005) [25] is used to extend the so-called unified estimation procedure (Chen et al., 2002) [4] for linear transformation models to the case of missing covariates. The non-missingness probability is estimated nonparametrically by the kernel smoothing technique. Under missing at random, the proposed estimators are shown to be consistent and asymptotically normal, with the asymptotic variance estimated consistently by the usual plug-in method. Moreover, the proposed estimators are more efficient than the weighted estimators with the inverse of true non-missingness probability as weight. Finite sample performance of the estimators is examined via simulation and a real dataset is analyzed to illustrate the proposed methods.
Keywords: Transformation; models; Missing; covariates; Weighted; estimator; Kernel; smoothing (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00048-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:9:p:2078-2090
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().