Asymptotic expansions for the pivots using log-likelihood derivatives with an application in item response theory
Haruhiko Ogasawara
Journal of Multivariate Analysis, 2010, vol. 101, issue 9, 2149-2167
Abstract:
Asymptotic expansions of the distributions of the pivotal statistics involving log-likelihood derivatives under possible model misspecification are derived using the asymptotic cumulants up to the fourth-order and the higher-order asymptotic variance. The pivots dealt with are the studentized ones by the estimated expected information, the negative Hessian matrix, the sum of products of gradient vectors, and the so-called sandwich estimator. It is shown that the first three asymptotic cumulants are the same over the pivots under correct model specification with a general condition of the equalities. An application is given in item response theory, where the observed information is usually used rather than the estimated expected one.
Keywords: Pivots; Log-likelihood; derivatives; Inverse; expansion; Sandwich; estimator; Item; response; theory (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00085-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:9:p:2149-2167
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().