Smooth depth contours characterize the underlying distribution
Linglong Kong and
Yijun Zuo
Journal of Multivariate Analysis, 2010, vol. 101, issue 9, 2222-2226
Abstract:
The Tukey depth is an innovative concept in multivariate data analysis. It can be utilized to extend the univariate order concept and advantages to a multivariate setting. While it is still an open question as to whether the depth contours uniquely determine the underlying distribution, some positive answers have been provided. We extend these results to distributions with smooth depth contours, with elliptically symmetric distributions as special cases. The key ingredient of our proofs is the well-known Cramér-Wold theorem.
Keywords: Halfspace; depth; Depth; contour; Characterization; Smooth; contour (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00126-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:101:y:2010:i:9:p:2222-2226
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().