A unified approach to non-minimaxity of sets of linear combinations of restricted location estimators
Tatsuya Kubokawa and
William E. Strawderman
Journal of Multivariate Analysis, 2011, vol. 102, issue 10, 1429-1444
Abstract:
This paper studies minimaxity of estimators of a set of linear combinations of location parameters [mu]i, i=1,...,k under quadratic loss. When each location parameter is known to be positive, previous results about minimaxity or non-minimaxity are extended from the case of estimating a single linear combination, to estimating any number of linear combinations. Necessary and/or sufficient conditions for minimaxity of general estimators are derived. Particular attention is paid to the generalized Bayes estimator with respect to the uniform distribution and to the truncated version of the unbiased estimator (which is the maximum likelihood estimator for symmetric unimodal distributions). A necessary and sufficient condition for minimaxity of the uniform prior generalized Bayes estimator is particularly simple. If one estimates where is a kxl known matrix, the estimator is minimax if and only if for any i and j (i[not equal to]j). This condition is also sufficient (but not necessary) for minimaxity of the MLE.
Keywords: Decision; theory; Generalized; Bayes; Linear; combination; Location; parameter; Location-scale; family; Maximum; likelihood; estimator; Minimaxity; Restricted; parameter; Restricted; estimator; Truncated; estimator; Quadratic; loss (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X11000807
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:102:y:2011:i:10:p:1429-1444
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().