EconPapers    
Economics at your fingertips  
 

Dimension estimation in sufficient dimension reduction: A unifying approach

E. Bura and J. Yang

Journal of Multivariate Analysis, 2011, vol. 102, issue 1, 130-142

Abstract: Sufficient Dimension Reduction (SDR) in regression comprises the estimation of the dimension of the smallest (central) dimension reduction subspace and its basis elements. For SDR methods based on a kernel matrix, such as SIR and SAVE, the dimension estimation is equivalent to the estimation of the rank of a random matrix which is the sample based estimate of the kernel. A test for the rank of a random matrix amounts to testing how many of its eigen or singular values are equal to zero. We propose two tests based on the smallest eigen or singular values of the estimated matrix: an asymptotic weighted chi-square test and a Wald-type asymptotic chi-square test. We also provide an asymptotic chi-square test for assessing whether elements of the left singular vectors of the random matrix are zero. These methods together constitute a unified approach for all SDR methods based on a kernel matrix that covers estimation of the central subspace and its dimension, as well as assessment of variable contribution to the lower-dimensional predictor projections with variable selection, a special case. A small power simulation study shows that the proposed and existing tests, specific to each SDR method, perform similarly with respect to power and achievement of the nominal level. Also, the importance of the choice of the number of slices as a tuning parameter is further exhibited.

Keywords: Random; matrix; Chi-square; and; weighted; chi-square; tests; Dimension; reduction; SIR; SAVE (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00166-1
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:102:y:2011:i:1:p:130-142

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:102:y:2011:i:1:p:130-142