Fiducial inference on the largest mean of a multivariate normal distribution
Damian V. Wandler and
Jan Hannig
Journal of Multivariate Analysis, 2011, vol. 102, issue 1, 87-104
Abstract:
Inference on the largest mean of a multivariate normal distribution is a surprisingly difficult and unexplored topic. Difficulties arise when two or more of the means are simultaneously the largest mean. Our proposed solution is based on an extension of R.A. Fisher's fiducial inference methods termed generalized fiducial inference. We use a model selection technique along with the generalized fiducial distribution to allow for equal largest means and alleviate the overestimation that commonly occurs. Our proposed confidence intervals for the largest mean have asymptotically correct frequentist coverage and simulation results suggest that they possess promising small sample empirical properties. In addition to the theoretical calculations and simulations we also applied this approach to the air quality index of the four largest cities in the northeastern United States (Baltimore, Boston, New York, and Philadelphia).
Keywords: Fiducial; inference; Largest; mean; Asymptotic; consistency; Importance; sampling (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00162-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:102:y:2011:i:1:p:87-104
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().