On directional multiple-output quantile regression
Davy Paindaveine and
Miroslav Siman
Journal of Multivariate Analysis, 2011, vol. 102, issue 2, 193-212
Abstract:
This paper sheds some new light on projection quantiles. Contrary to the sophisticated set analysis used in Kong and Mizera (2008) [13], we adopt a more parametric approach and study the subgradient conditions associated with these quantiles. In this setup, we introduce Lagrange multipliers which can be interpreted in various interesting ways, in particular in a portfolio optimization context. The corresponding projection quantile regions were already shown to coincide with the halfspace depth ones in Kong and Mizera (2008) [13], but we provide here an alternative proof (completely based on projection quantiles) that has the advantage of leading to an exact computation of halfspace depth regions from projection quantiles. Above all, we systematically consider the regression case, which was barely touched in Kong and Mizera (2008) [13]. We show in particular that the regression quantile regions introduced in Hallin, Paindaveine, and Siman (2010) [6] and [7] can also be obtained from projection (regression) quantiles, which may lead to a faster computation of those regions in some particular cases.
Keywords: Multivariate; quantile; Quantile; regression; Multiple-output; regression; Halfspace; depth; Portfolio; optimization; Value-at-risk (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00163-6
Full text for ScienceDirect subscribers only
Related works:
Working Paper: On directional multiple-output quantile regression (2009) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:102:y:2011:i:2:p:193-212
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().