An asymptotic approximation for EPMC in linear discriminant analysis based on two-step monotone missing samples
Nobumichi Shutoh,
Masashi Hyodo and
Takashi Seo
Journal of Multivariate Analysis, 2011, vol. 102, issue 2, 252-263
Abstract:
In this paper, we consider the expected probabilities of misclassification (EPMC) in the linear discriminant function (LDF) based on two-step monotone missing samples and derive an asymptotic approximation for the EPMC with an explicit form for the considered LDF. For this purpose, we also provide some results of the expectations for the inverted Wishart matrices in this paper. Finally, we conduct the Monte Carlo simulation for evaluating our result.
Keywords: Linear; discriminant; analysis; Expected; probability; of; misclassification; Asymptotic; approximation; Monotone; missing; samples (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00189-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:102:y:2011:i:2:p:252-263
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().