EconPapers    
Economics at your fingertips  
 

Partial sum process to check regression models with multiple correlated response: With an application for testing a change-point in profile data

W. Bischoff and A. Gegg

Journal of Multivariate Analysis, 2011, vol. 102, issue 2, 281-291

Abstract: We consider regression models with multiple correlated responses for each design point. Under the null hypothesis, a linear regression is assumed. For the least-squares residuals of this linear regression, we establish the limit of the partial sums. This limit is a projection on a certain subspace of the reproducing Kernel Hilbert space of a multivariate Brownian motion. Based on this limit, we propose a significance test of Kolmogorov-Smirnov type to test the null hypothesis and show that this result can be used to study a change-point problem in the case of linear profile data (panel data). We compare our proposed method, which does not rely on any distributional assumptions, with the likelihood ratio test in a simulation study.

Keywords: Multiple; linear; regression; model; Multiple; residual; partial; sum; limit; process; Multivariate; Brownian; motion; Change-point; problem; Panel; data; Profile; data; Repeated; measurements (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00192-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:102:y:2011:i:2:p:281-291

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:102:y:2011:i:2:p:281-291