On spline regression under Gaussian subordination with long memory
Jan Beran and
Arno Weiershäuser
Journal of Multivariate Analysis, 2011, vol. 102, issue 2, 315-335
Abstract:
Motivated by an example from neurobiology, we consider estimation in a spline regression model with long-range dependent errors that are generated by Gaussian subordination. Consistency and the asymptotic distribution are derived for general Hermite ranks. Simulations illustrate the asymptotic results and finite sample properties. The method is applied to optical measurements of calcium concentration in the antennal lobe of honey bees used in the study of olfactory patterns.
Keywords: Long-range; dependence; Hermite; rank; Gaussian; subordination; Spline; regression; Two-phase; regression; Change; point (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00197-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:102:y:2011:i:2:p:315-335
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().