On linear models with long memory and heavy-tailed errors
Zhou Zhou and
Wei Biao Wu
Journal of Multivariate Analysis, 2011, vol. 102, issue 2, 349-362
Abstract:
We consider the robust estimation of regression parameters in linear models with long memory and heavy-tailed errors. Asymptotic Bahadur-type representations of robust estimates are developed and their limiting distributions are obtained. It is shown that the limiting distributions are very different from those obtained under short memory. A simulation study is carried out to compare the performance of various asymptotic representations.
Keywords: Bahadur; representation; Heavy; tails; Long; memory; M-estimation (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00199-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:102:y:2011:i:2:p:349-362
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().