EconPapers    
Economics at your fingertips  
 

A profile-type smoothed score function for a varying coefficient partially linear model

Gaorong Li, Sanying Feng and Heng Peng

Journal of Multivariate Analysis, 2011, vol. 102, issue 2, 372-385

Abstract: The varying coefficient partially linear model is considered in this paper. When the plug-in estimators of coefficient functions are used, the resulting smoothing score function becomes biased due to the slow convergence rate of nonparametric estimations. To reduce the bias of the resulting smoothing score function, a profile-type smoothed score function is proposed to draw inferences on the parameters of interest without using the quasi-likelihood framework, the least favorable curve, a higher order kernel or under-smoothing. The resulting profile-type statistic is still asymptotically Chi-squared under some regularity conditions. The results are then used to construct confidence regions for the parameters of interest. A simulation study is carried out to assess the performance of the proposed method and to compare it with the profile least-squares method. A real dataset is analyzed for illustration.

Keywords: Varying; coefficient; partially; linear; model; Local; likelihood; Profile-type; smoothed; score; function; Confidence; region; Curse; of; dimensionality (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00213-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:102:y:2011:i:2:p:372-385

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:102:y:2011:i:2:p:372-385