A link-free method for testing the significance of predictors
Peng Zeng
Journal of Multivariate Analysis, 2011, vol. 102, issue 3, 550-562
Abstract:
One important step in regression analysis is to identify significant predictors from a pool of candidates so that a parsimonious model can be obtained using these significant predictors only. However, most of the existing methods assume linear relationships between response and predictors, which may be inappropriate in some applications. In this article, we discuss a link-free method that avoids specifying how the response depends on the predictors. Therefore, this method has no problem of model misspecification, and it is suitable for selecting significant predictors at the preliminary stage of data analysis. A test statistic is suggested and its asymptotic distribution is derived. Examples are used to demonstrate the proposed method.
Keywords: Fourier; transform; Nonparametric; hypothesis; testing; Variable; selection; Weighted; chi-squared; distribution (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00219-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:102:y:2011:i:3:p:550-562
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().