EconPapers    
Economics at your fingertips  
 

Blockwise empirical likelihood for time series of counts

Rongning Wu and Jiguo Cao

Journal of Multivariate Analysis, 2011, vol. 102, issue 3, 661-673

Abstract: Time series of counts have a wide variety of applications in real life. Analyzing time series of counts requires accommodations for serial dependence, discreteness, and overdispersion of data. In this paper, we extend blockwise empirical likelihood (Kitamura, 1997 [15]) to the analysis of time series of counts under a regression setting. In particular, our contribution is the extension of Kitamura's (1997) [15] method to the analysis of nonstationary time series. Serial dependence among observations is treated nonparametrically using a blocking technique; and overdispersion in count data is accommodated by the specification of a variance-mean relationship. We establish consistency and asymptotic normality of the maximum blockwise empirical likelihood estimator. Simulation studies show that our method has a good finite sample performance. The method is also illustrated by analyzing two real data sets: monthly counts of poliomyelitis cases in the USA and daily counts of non-accidental deaths in Toronto, Canada.

Keywords: Autocorrelation; Generalized; linear; model; Latent; process; Nonstationarity; Overdispersion; Regression; analysis (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00238-1
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:102:y:2011:i:3:p:661-673

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:102:y:2011:i:3:p:661-673