EconPapers    
Economics at your fingertips  
 

Some theoretical properties of Silverman's method for Smoothed functional principal component analysis

Xin Qi and Hongyu Zhao

Journal of Multivariate Analysis, 2011, vol. 102, issue 4, 741-767

Abstract: Principal component analysis (PCA) is one of the key techniques in functional data analysis. One important feature of functional PCA is that there is a need for smoothing or regularizing of the estimated principal component curves. Silverman's method for smoothed functional principal component analysis is an important approach in a situation where the sample curves are fully observed due to its theoretical and practical advantages. However, lack of knowledge about the theoretical properties of this method makes it difficult to generalize it to the situation where the sample curves are only observed at discrete time points. In this paper, we first establish the existence of the solutions of the successive optimization problems in this method. We then provide upper bounds for the bias parts of the estimation errors for both eigenvalues and eigenfunctions. We also prove functional central limit theorems for the variation parts of the estimation errors. As a corollary, we give the convergence rates of the estimations for eigenvalues and eigenfunctions, where these rates depend on both the sample size and the smoothing parameters. Under some conditions on the convergence rates of the smoothing parameters, we can prove the asymptotic normalities of the estimations.

Keywords: Functional; PCA; Smoothing; methods; Roughness; penalty; Convergence; rates; Functional; central; limit; theorem; Asymptotic; normality (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00241-1
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:102:y:2011:i:4:p:741-767

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:102:y:2011:i:4:p:741-767