Tests for independence in non-parametric heteroscedastic regression models
Zdenek Hlávka,
Marie Husková and
Simos G. Meintanis
Journal of Multivariate Analysis, 2011, vol. 102, issue 4, 816-827
Abstract:
Consistent procedures are constructed for testing independence between the regressor and the error in non-parametric regression models. The tests are based on the Fourier formulation of independence, and utilize the joint and the marginal empirical characteristic functions of the regressor and of estimated residuals. The asymptotic null distribution as well as the behavior of the test statistic under alternatives is investigated. A simulation study compares bootstrap versions of the proposed tests to corresponding procedures utilizing the empirical distribution function.
Keywords: Test; of; independence; Empirical; characteristic; function; Kernel; regression; estimator; Bootstrap (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(11)00003-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:102:y:2011:i:4:p:816-827
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().