-Consistent robust integration-based estimation
Sung Jae Jun,
Joris Pinkse and
Yuanyuan Wan
Journal of Multivariate Analysis, 2011, vol. 102, issue 4, 828-846
Abstract:
We propose a new robust estimator of the regression coefficients in a linear regression model. The proposed estimator is the only robust estimator based on integration rather than optimization. It allows for dependence between errors and regressors, is -consistent, and asymptotically normal. Moreover, it has the best achievable breakdown point of regression invariant estimators, has bounded gross error sensitivity, is both affine invariant and regression invariant, and the number of operations required for its computation is linear in n. An extension would result in bounded local shift sensitivity, also.
Keywords: Robust; regression; Linear; model; Integration-based; estimator; High; breakdown; point; estimator (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(11)00004-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:102:y:2011:i:4:p:828-846
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().