EconPapers    
Economics at your fingertips  
 

The proportional hazards model for survey data from independent and clustered super-populations

Susana Rubin-Bleuer

Journal of Multivariate Analysis, 2011, vol. 102, issue 5, 884-895

Abstract: Data from most complex surveys are subject to selection bias and clustering due to the sampling design. Results developed for a random sample from a super-population model may not apply. Ignoring the survey sampling weights may cause biased estimators and erroneous confidence intervals. In this paper, we use the design approach for fitting the proportional hazards (PH) model and prove formally the asymptotic normality of the sample maximum partial likelihood (SMPL) estimators under the PH model for both stochastically independent and clustered failure times. In the first case, we use the central limit theorem for martingales in the joint design-model space, and this enables us to obtain results for a general multistage sampling design under mild and easily verifiable conditions. In the case of clustered failure times, we require asymptotic normality in the sampling design space directly, and this holds for fewer sampling designs than in the first case. We also propose a variance estimator of the SMPL estimator. A key property of this variance estimator is that we do not have to specify the second-stage correlation model.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(11)00006-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:102:y:2011:i:5:p:884-895

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:102:y:2011:i:5:p:884-895