On qualitative robustness of support vector machines
Robert Hable and
Andreas Christmann
Journal of Multivariate Analysis, 2011, vol. 102, issue 6, 993-1007
Abstract:
Support vector machines (SVMs) have attracted much attention in theoretical and in applied statistics. The main topics of recent interest are consistency, learning rates and robustness. We address the open problem whether SVMs are qualitatively robust. Our results show that SVMs are qualitatively robust for any fixed regularization parameter [lambda]. However, under extremely mild conditions on the SVM, it turns out that SVMs are not qualitatively robust any more for any null sequence [lambda]n, which are the classical sequences needed to obtain universal consistency. This lack of qualitative robustness is of a rather theoretical nature because we show that, in any case, SVMs fulfill a finite sample qualitative robustness property. For a fixed regularization parameter, SVMs can be represented by a functional on the set of all probability measures. Qualitative robustness is proven by showing that this functional is continuous with respect to the topology generated by weak convergence of probability measures. Combined with the existence and uniqueness of SVMs, our results show that SVMs are the solutions of a well-posed mathematical problem in Hadamard's sense.
Keywords: Classification; Machine; learning; Nonparametric; regression; Qualitative; robustness; Support; vector; machines (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(11)00010-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:102:y:2011:i:6:p:993-1007
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().