Optimal vector quantization in terms of Wasserstein distance
Wolfgang Kreitmeier
Journal of Multivariate Analysis, 2011, vol. 102, issue 8, 1225-1239
Abstract:
The optimal quantizer in memory-size constrained vector quantization induces a quantization error which is equal to a Wasserstein distortion. However, for the optimal (Shannon-)entropy constrained quantization error a proof for a similar identity is still missing. Relying on principal results of the optimal mass transportation theory, we will prove that the optimal quantization error is equal to a Wasserstein distance. Since we will state the quantization problem in a very general setting, our approach includes the Rényi-[alpha]-entropy as a complexity constraint, which includes the special case of (Shannon-)entropy constrained ([alpha]=1) and memory-size constrained ([alpha]=0) quantization. Additionally, we will derive for certain distance functions codecell convexity for quantizers with a finite codebook. Using other methods, this regularity in codecell geometry has already been proved earlier by György and Linder (2002, 2003)Â [11] and [12].
Keywords: Wasserstein; distance; Optimal; quantization; error; Codecell; convexity; Renyi-[alpha]-entropy (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X11000613
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:102:y:2011:i:8:p:1225-1239
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().