Time-varying coefficient estimation in differential equation models with noisy time-varying covariates
Zhaoping Hong and
Heng Lian
Journal of Multivariate Analysis, 2012, vol. 103, issue 1, 58-67
Abstract:
We study the problem of estimating time-varying coefficients in ordinary differential equations. Current theory only applies to the case when the associated state variables are observed without measurement errors as presented in Chen and Wu (2008)Â [4] and [5]. The difficulty arises from the quadratic functional of observations that one needs to deal with instead of the linear functional that appears when state variables contain no measurement errors. We derive the asymptotic bias and variance for the previously proposed two-step estimators using quadratic regression functional theory.
Keywords: Differential; equation; Local; polynomial; regression; Measurement; error; Varying; coefficient; models (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X11001199
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:103:y:2012:i:1:p:58-67
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().